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Abstract

A minimum correction homotopy approach is used to obtain the
simultaneous/integrated optimal design of a large flexible structure and its active control
system. Instead of the usual method of weighting and summing all desired objectives to
form a constrained scalar optimization problem, a vector of objective functions is dealt with
directly.

The Draper/RPL configuration (a central hub with four symmetric, identical arms) is
the design structure. The design seeks to minimize the mass of the arms. Using simple
feedback of arm displacements and velocities, the control system seeks to achieve specified
closed-loop eigenvalues (frequencies and damping ratios) and control effort. Design
variables are the arm dimensions, control system gains, and sensor and actuator locations.
Not only can the structural design be accomplished while placing the closed-loop
eigenvalues, but a simultaneous 50% reduction in mass and/or control effort can be
obtained.

Since reduced-order models were used for the structural/control design, the resultant
configurations are easily driven unstable by spillover from higher-order unmodeled modes.

A modal suppression technique is applied to eliminate observation spillover and provide a

decade of deadband above the controller bandwidth. { - i, ,//,m . .r;,ﬂjh 2B
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INTEGRATED STRUCTURAL/CONTROL DESIGN
VIA MULTIOBJECTIVE OPTIMIZATION

L. Introduction

The design of large flexible space structures presents distinct and often competing
challenges to both structural dynamicists and control engineers. The need to maneuver
such structures and then suppress resultant vibrations, or to reject disturbance vibrations
from a variety of sources to meet exacting pointing and stability requirements is often
directly opposed to the low stiffness and high flexibility accompanying a low weight
design. Passive techniques to supplement structural damping justly receive much attention
and are very important, but are not panaceas. The requirement for active control of large
space structures is widely, if not universally, accepted.

Active control of large space structures has been extensively studied. Design
methods have progressed well beyond the practice of adding active controls to make up for
or 'fix' structural difficulties. However, design of actively controlled structures has
traditionally been a sequential process: first the structure was designed based on structural
criteria (minimize mass while achieving desired natural frequencies, mode shapes and
dynamic response); then the control system was designed to meet desired closed-loop
objectives (while minimizing controller work and the energy of the vibrating structure) for
the given structural design. Inasmuch as a lower weight (higher flexibility) structure
requires more control energy, the objectives of the two design steps are contradictory and
an optimal controller placed on an optimally designed structure does not result in an optimal

control-structure design.




A natural progression has been to incorporate the sequential approach into a design
loop, repeating the process so that the design result improves with each iteration.
However, the iterated design tends to be dominated by the first discipline in the sequence.

In the recent technical literature, the competitive natures of structural and active
control system design are recognized. Attempts are made and interfaces are suggested to
integrate the design process. However, because of the very strong, frequently
unintentional and adverse coupling between the flexible structure and active control system,
a wholistic or simultaneous approach to integrated structural/control design is necessary.
In particular, a vector approach wherein both structural and control design objectives are
treated in parallel will be developed.

Finally, it must be noted that designs are normally based on reduced-order models,
especially of large flexible space structures, either due to considerations of on-board
computer speed or the ability to accurately determine controller gains. Spillover from the
higher-order (unmodeled) residual modes affects system performance and may well cause
instability. Considerations of model order truncation effects must not be neglected in any
structural/control design. An integrated design approach, as any other, is only as good as
the information it is based upon.

This dissertation presents an approach to integrate structural and control design.
First, previous work, using both scalar and multiobjective approaches, is reviewed
(Chapter II). Next, the problem of an actively controlled structural system is formulated
(Chapter III), followed by descriptions of how the structure and controller are modeled for
this study (Chapter IV). In Chapter V the use of a minimum correction homotopy
algorithm to optimize a vector objective function is discussed and applied to this integrated
structural/control design problem. Chapter VI presents design results for various
combinations of design objectives. An examination of the designs' sensitivity to spillover

from higher-order modes leads to the two methods of spillover control and corresponding




results discussed in Chapter VII. Conclusions regarding this integrated design approach,
including spillover control, and recommendations for future work are given in Chapters

VIII and IX, respectively.




II. Background

Within the last several years, interest and research in integrated structural/control
design has grown and been reported. Such design methods result in desired system
response characteristics with lower mass and possibly control effort because structural
properties have been tailored to augment the active control system. However, the vast

majority of the work has used a series/sequential approach to arrive at an optimal design.

Scalar Approach

This integrated design task has almost exclusively been treated as a scalar
optimization problem. The objective function is usually taken to be either: 1) the structural
mass, with the other desired criteria (controller performance or system response
characteristics) treated as constraints to define a feasible design space, or 2) a weighted
sum of all desired properties and characteristics. In the first case, such an approach not
only requires a priori determination of the criteria excluded from the objective function, but
seriously weakens the overall design process by the choice of a single criterion to define
the merit of an entire system. Design trade-offs may be accomplished (with some
difficulty) by changing the constraints to define a new feasible design space and
reaccomplishing the optimization problem.

In the second case, the combination of several conflicting, usually non-
commensurable criteria which should be optimized simultaneously into a single scalar
objective function is not only unnatural to the physics of the problem but also often
inadequate. While commendable and significant in that structural and control syntheses are
treated together vice sequentially, this combinatorial approach raises the question: what

does minimization of a sum of structural properties (say mass) and controller characteristics




(say control energy or a steady-state linear quadratic regulator [LQR] cost function) really
mean or represent? LQR controller synthesis suffers a similar identity crisis: why the
minimization of a particular weighted integral of state and control variables? In the case of
LQR controllers, the question is moot since the true motivation is to yield a tractable
problem whose solution is readily synthesized and easily implemented. Likewise, the
combinatorial approaches to structural/control design "represent at least a convenient
parameterization of the problem wherein designs can be iteratively considered and
improved through variation of the weighting matrices (1:1124)." Although doing such
design sensitivity trade-offs only yields local information in the neighborhood of the
optimum (2:483,503; 3:141; 4:1101; 5:333), this approach is particularly and conveniently
amenable to solution via the vast software libraries of existing optimization techniques and

algorithms.

Multiobjective Optimization

Multiobjective (multicriteria, multicriterion, vector) optimization is a more natural
and, hopefully, more efficient approach to effectively account for the numerous different
and often conflicting or competing criteria inherent in structural/control design problems.
This approach may be mathematically considered as the vector extension of scalar
optimization or, from an engineering point of view, seen as a tool to find compromise
designs/solutions to the conflicting practical requirements. The designer can then
systematically analyze the alternatives to arrive at a preferred solution which, while none of
the criteria will necessarily attain its extremum, will satisfy the design requirements in some
subjective 'best’ way (2:503; 3:141; 4:1101).

Multiobjective optimization first arose in the study of mathematical economics and
progressed to general decision-making and engineering (6:162-163; 7; 8; 9; 10; 11:1-10).

Its use in structural mechanics dates back to the 1970's. Stadler's survey (12) examines




multicriteria optimization in the broader field of mechanics to 1984. Briefer summaries of
its applications in structural mechanics to date are given by several authors (2:484; 3:141-
142; 13:184; 14:119-120).

Pareto Optimality. (2:484-487; 3:142; 4:1102-1103; 5:333-334; 10:68-72; 15:925-

926; 16:459-460). The general form of a multiobjective optimization problem is

min y(2) (2-1)
z2€ Q

where y: Q — RPis a vector objective function given by

@%@ %@, (2-2)

Y@

The components ¥;: Q — R, i =1, 2, ..., p are the design criteria - the conflicting and

often non-commensurable performance objectives. The design variable vector z belongs to

the feasible set Q < R4, defined by
Q=1{2eR: ¢c@<0 h®=0} (2-3)

where ¢;; R4 — R7,i =1, 2, ..., r are inequality constraint functions and hj: Rd — R4, i =
1, 2, ..., q are equality constraint functions. The image of the feasible set in the criterion

space is the attainable set, given by
© = {y@eRP:2¢e Q} (2-4)

Since the components ¥; of the objective vector are usually conflicting, an optimal

solution (or superior solution), that is, a unique point or value of z which will minimize all

Yi simultaneously, will not, in general, exist for the multiobjective problem. Attention is
therefore commonly directed to Pareto optimum solutions (non-inferior solutions, non-

dominated solutions, efficient solutions).




A vector z* € Q is (strongly) Pareto optimal if and only if there exists no z € Q such
thaty, @ <7v; @), i= 1,2, .., p with Y@<y (z*) for at least one j. Verbally, z* is
Pareto optimal if there exists no feasible vector z which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. In contrast, if all
elements of the objective vector are simultaneously achievable, the solution is termed
"dominated”.

If © is non-empty closed and max (y; (z) : v; (z) € ©] < o for all i, then £ has at
least one (strongly) Pareto optimal solution. "Thus, a large class of multiobjective
optimization problems in structural design may be expected to possess at least one non-
dominated solution (16:460)." Whereas in scalar optimization one optimal solution is
usually characteristic of a problem, a set or family of Pareto optimal solutions generally
exist for a multiobjective optimization problem. Mathematically speaking. the
multiobjective optimization problem is 'solved' once the Pareto optimal set is determined.
Practically speaking, too many Pareto optimal solutions often exist, and it may be
necessary to order or rank the set to determine a preferred solution.

While there is an extensive literature of models and methods to generate the Pareto
optimal set and hence solve multiobjective optimization problems, the choice of which
technique to use on a given problem is very subjective, especially for nonlinear, large
dimensioned problems. There is no requirement to seek Pareto over dominated solutions;
it has simply become common practice to do so when possible. If they can be found, the
Pareto solutions can be claimed to be optimal in some subjective sense, whereas dominated
solutions are only attainable. Unfortunately, there are very few direct precedents for the
multiobjective optimization of large, actively controlled structures. Based on the work and
conclusions of Rao and associates (13, 14, 17), utility function, goal programming and

cooperative game theory methods appeared promising.




The utility function and goal programmiﬁg methods both reduce the original
multiobjective problem to a scalar optimization problem (primarily as a weighted sum of the
individual design objectives). Minimizing the scalar objective naturally yields a Pareto
solution (corresponding to the particular scalarization scheme, weighting, etc.). However,
both of these methods had difficulty converging to a solution for the sub-problem of
control system design (placing closed-loop eigenvalues) and would not converge to
solutions for integrated structural/control design (reducing mass while placing closed-loop
eigenvalues). Therefore, these relatively simple approaches were abandoned and, based on
these experiences, cooperative game theory (a much more complicated and elegant
scalarization scheme) was never attempted.

Minimum Correction Homotopy Approach. Junkins and associates have used a
minimum correction homotopy (MCH) approach to multiobjective optimization which can
preserve the vector nature of the competing design criteria (18-21). However, in three of
the four works (18-20), only controller design objectives (state error energy, control
energy, and a stability robustness measure) were considered in a sequential approach
minimizing one criterion while holding the other two objectives to prescribed values in the
neighborhood of their unconstrained minima. In the fourth work (21), the MCH algorithm
was used to establish a feasible design point satisfying a constraint vector of desired
closed-loop eigenvalues. A robustness measure (the sensitivity of the closed-loop
eigenvalues with respect to variation of uncertain system parameters) was subsequently
minimized.

While the most notable and honestly vector approaches to multiobjective
optimization, these four studies (18-21) still lack two important considerations from the
standpoint of integrated structural/control design. First, only control system design was
considered, although one case is presented (21) where a structural design iteration was

performed before the MCH approach was used to satisfy the constraint vector. Second,




the 'true’ objectives are not dealt with directly as a vector. They are either dealt with in
sequence as constraints (18-20) or ‘after the fact' (21). Indeed, values for the final or
'true’ objective (robustness) are not even reported in (21).

Given the convergence problems encountered with utility function and goal
programming approaches to finding Pareto optimal solutions, the MCH approach was
turned to next. A simple extension of the vector (objective) function in (21) to include
structural mass (and later control effort) applied the MCH technique to the problem of
integrated structural/control design.

Although Stadler reported "the most extensive use of multicriteria optimization has
been made in optimal structural design (12:282)," the techniques encompassed by the topic
of multiobjective optimization are only beginning to be considered for the simultaneous or
integrated structural/control design problem. While again commendable unifications of
structural and control design objectives, the work to date may still be classified as either a
series/sequential approach (17-20) or reduction (via some weighting scheme) to a scalar
optimization problem (13, 14, 17-20).

The MCH method differs from the traditional or standard multiobjective optimization
techniques in two ways. First, dominated vice Pareto solutions are found; there is no
trade-off amongst the competing design objectives to arrive at some "best" solution. The
method converges rapidly to the objective vector as specified. Second, the vector nature of
the objectives is preserved vice the more common reduction to a scalar optimization
problem.

In spite of these differences, the topic of multiobjective optimization should include
the MCH approach in its catalog of techniques. This research shows the approach's
validity and great utility to extend multiobjective optimization to the problem of integrated

structural/control design.




II. Problem Formulation

Consider the discretized linearized equations of vibrational motion for a controlled

structural system, neglecting disturbances:

Mw+ Cw + Kw = By (3-1)

where

w = n-vector of generalized coordinates

u = a-vector of control inputs

M = nxn symmetric positive definite mass matrix

C = nxn symmetric positive semidefinite damping matrix

K = nxn symmetric positive semidefinite stiffness matrix

B = nxa control influence matrix

0 = d( )y/dt

For direct output feedback control of such a system, let local position and velocity

measurements, respectively, be denoted as:
Yo = Hyw, y, =Hw (3-2)

Assuming s colocated position and velocity sensors, Hy = Hy = H and is an sxn matrix
describing sensor locations and orientations, while ¥p and y, are s-vectors.

The control u is a linear combination of the outputs:

= -GyHw - G,Hw (3-3)
3-1




where Gp and G, are constant axs gain matrices.

If proportional damping is assumed,
C=oM+ BK (3-4)

where a and P are positive constants. If Eqs (3-3) and (3-4) are substituted into Eq (3-1),

the closed-loop system is
Myw + Cgw + Kyw = 0 (3-5)
where
Mg=M, C;=aM+BK+BGH, Ky=K+BG,H (36
The second-order system of Eq (3-5) can be written in first-order state-space form:

Ai(_ =Tx (3-7)

R P B
X = . A= . T= (3-8)
{ w } 0 Mcl "Kcl -Ccl

or, more conveniently, as

where

X = Agx (3-9)

where, since M = M and with I an identity matrix,

0 I
Ay = (3-10)
-1 -1
-M K -M " Cq

The associated right and left eigenvalues and eigenvectors of A, are, respectively,




)"i € = '\cl €. }‘i fi = Aclei 1= 1,2, veey 2n (3-11)

Assuming all eigenvalues are distinct and, therefore, the eigenvectors are linearly

independent, the eigenvectors are conventionally normalized as

fiT g = ajj, .fiT A & = 81_] A (3-12a)
or
FTE =1, FTALE =[A]J (3-12b)

where E and F are the right and left eigenvector matrices whose ith columns are the
eigenvectors ¢; and f;, respectively, 51j is the Kronecker delta, and [ A |is a diagonal
matrix of the eigenvalues Ay, A, ..., Ay, .

The closed-loop damping ratios {; and damped frequencies w; are related to the in

general complex conjugate pairs of closed-loop eigenvalues A; as
Ci = -G / (()"l2 + (.!Ji2 )1/2’ A’i = O'i + j(Di 1 = 1, 2, . N (3*13)

The specific structural mode! and control system used in this research arc described in
the next chapter, leading to explicit expressions for the system matrices and state, output

and control vectors.




IV. Model Description

Integrated structural/control design modifications to the Draper/RPL spacecraft model
will be demonstrated herein. This model has been used to test and demonstrate hardware
and control laws for maneuvering large flexible spacecraft. As shown in Figure 4-1, the
configuration consists of a large central hub with four identical appendages/arms
symmetrically cantilevered from the hub. Each arm is modeled as a continuous beam with

a lumped mass at the end.

Figure 4-1. The Draper/RPL configuration




Vibrational Motion

Only the planar rotational and vibrational dynamics will be considered. Radial
elongation of the arms and out-of-plane deformations are neglected. The equations of
motion for the uncontrolled system are derived by finding the system kinetic and potential
energies, using assumed modes to discretize the cn\crgies, truncating to second-order terms,
forming the Lagrangian, and writing Lagrange's equations for the system. Figure 4-2
shows the Draper/RPL configuration with appendages numbered, deflections and rotations

defined, and a body-fixed reference frame.

r—=—
A
1
\
__9\<
<

7\

L]

Figure 4-2. Draper/RPL configuration with reference frame and deflections defined




Kinetic Energy. The total kinetic energy will be written as the sum of the hub,
appendage and tip mass energies.

The kinetic energy of the rigid hub alone is that of a solid cylinder:
Th = 5 I 67 (4-1)
where 8 is the rigid-body rotation angle of the body-fixed reference frame with respect to
an inertial reference frame, the hub moment of inertia is I}, = my, R2/2, my, is the hub mass

and R is the hub radius.

To determine the kinetic energy of appendage 1, a position vector is written as
I = xby+vh (4-2)

The velocities of the elements of appendage 1 are obtained by taking the first time derivative

of the position vector with respect to an inertial reference frame:

\}92 + (éx;l)

n

= —vOb; + (v + x0) by (4-3)

The x denotes the outer or cross product. Finally, the kinetic energy of appendage 1 is the
inner or dot product of the velocity vector with itself integrated with respect to the mass

over the length of the appendage. Denoting the appendage’'s moment of inertia as

x=R+L
I, = f x2 dm (4~4)
x=R




the kinetic energy of appendage 1 is

x=R+L
T1=% (r; ' y) dm
x=R
x=R+L
= -% w2+ v282 +2v6x)dm| + 1,62 (4-5)
x=R

The kinetic energy of the tip mass on appendage 1 is found in a similar manner. The

position vector is
rg = R+L)by + vl oraL )by (4-6)

As 2 reminder that the deflection v must be evaluated at x =R + L, let v;; = vl, _ g | and

write the velocity vector as

-

q = viby + Oxry)

= -V ém + [\'/[1 + é(R+L)]_Qz (4-7)
The velocity is then
2 . -
Vi = [y " Ly
= {/t%+2{/l1é(R+L)+é2(R+L)2+vlzé2 (4-8)

To include the small effects of the rotary inertia of the tip mass, the angular velocity of the
tip mass is that of the body-fixed reference frame plus a component due to the deflection of

the end of the appendage (where the tip mass is located):




o —

dv
d( 5 : J
. . x
o eu = 0 + —T
= 0+ vy 4-9)
o o
The kinetic energy of the tip mass is the sum of the translational and rotational energies:
Ty = %‘ [ mtv[% + I et% ] (4-10)
. . . . .
The kinetic energy of appendage 3 and its tip mass are derived similarly:
y=R+L
Ty = — J W+ u?0% +2u6y) dm| + 36%} (@11
® 2
y=R
Tg= 5 [m,V§ + L65] (4-12)
L
where
y=R+L
I, = j y? dm (4-13a)
o
y=R
vi=10d+2030@R+L) + 02R+L)* + u362 (4-13b)
o
du
d( d l3]
; y
®
= 6 + ug (4-13c)
o U3 = ul y=R+L (4-13d)
4-5
L




Consider only the case of anti-symmetric deformations of the arms where uy = -u3

and vp = -v; as shown in Figure 4-3.

Figure 4-3. Anti-symmetric deformation

Thus, the kinetic energies of the tirst (third) appendage and tip mass are equal in magnitude
to those of the second (fourth) appendages and tip mass - i.e., T, = T, Tp =Ty, T4 = T,
T = Ti3. The total system kinetic energy (T) can be written as the sum of the individual

energies:

T = Th+2(T1+Tl]+T3+T[3) (4—14)




To expand Eq (4-14), carry out the integrations over dm in the arm thickness (t) and height
(x) dimensions, assume constant mass density along the arms (py), and noting that I3 =1,

define

Ip = 31y + 25 +2m®R+L) (4-15)
The total kinetic energy is then written as

R+L
T = (Ig+21)6% + pytx j W+ v202+2vOx)dx
R

R+L
+ J- (0 + u? éz+21}éy) dy | + I,[26(\}l'l+ﬁ[;)+(\}[’1)2+({11’3)2]
R
+ mlvg+ud +20R+L)(vy+ug) + 0202+ ud]  @-16)

A discretized system model is formed by assuming that the elastic arm deformations
(relative to a body-fixed undeformed state) can be represented as a linear combination of

admissible (shape) functions p; (p) for the clamped-free appendage (21:699; 22:18):
Ri(p) = 1 - cos (imp/L) + 0.5 (-1) i+! (inp/L) 2 417

where & is the familiar mathematical constant, p is the radial distance along the arm
(measured from the end clamped at the hub) and L is the arm length. This assumed mode
or shape function must be an admissible function for the model of a continuous beam with
a lumped mass at the end. The (shape) functions p; (p) are admissible since they satisfy
the geometric boundary conditions of the appendage: p (p=0) = 0 since u (1,0) = v (1,0) =
0 and W' (p=0) = 0 since u' (t,0) = v' (t,0) = 0. [While not required, the y, (p) are also

comparison functions for a clamped-free appendage (beam alone), since they also satisfy




the natural or physical boundary conditions: p" (p=L) = 0 since u" (t,L) = v" (t,L) = 0
and p™ (p=L) = 0 since u™ (t,L) = v (1,L) = 0. However, when the tip masses are
included in the model, the y; (p) do not satisfy the natural boundary conditions but are still
admissible functions.]

The transverse body-fixed deformations of the arms are modeled as

Ngr

B = D, U0 k), 0<psL (4-18a)
i=1
Ngg

VP = ) Vi ), O<psL (4-18b)

i=1

where N is the number of admissible functions considered. This assumed-modes method
yields a generalized parameter model with U; (1) and V; (t) the generalized displacement
coordinates. Eqs (4-18) can be differentiated with respect to time and/or direction and
substituted into the expression for the total system kinetic energy, Eq (4-16), to transform
the expression to generalized coordinates.

Potential Energy. The potential energy of the system is the sum of the gravitational
and strain energies. Since the structure is assumed to be in orbit (or, if on earth, supported
by an air-bearing table), the gravitational potential will be neglected and the total potential
energy P taken as the strain or elastic potential energy alone, summed over all four

appendages:

L 14 L ”
P = EI, { [ @i [ o dp] (4-19)




Ey is the modulus of elasticity (Young's modulus), I, is the area moment of inertia (I, =
x13/12), and u" and v" are the second partial derivatives of u(t,p) and v(t,p) with respect
to p. The restriction of anti-symmetric deformations also remains.

The assumed-modes method [Eqs (4-17) to (4-18)] again leads to the generalized
parameter model with U; (t) and V; (t) the generalized displacement coordinates and W; (p)
the admissible functions. Substituting into generalized parameters, differentiating and

arranging in matrix notation yields

T— L e ”
P = E, {U} _ jo Hi () 1y (p) dp] {u}

[ L 144 ”
+ Eyl, (viT Jo B () 1 (p) dp} {v} (4-20)

System Matrices. Now that the system kinetic and potential energies are in hand, the
differential equations of motion are obtained from Lagrange's equation (for no

nonconservative forces)

d(SLgJ

S w; SL

0%/ 2 _ (4-21)
dt 5wi

wherei =1, 2, ..., # of generalized coordinates. The Lagrangian is formed asLg =T - P

where terms of order three or higher are neglected and the energies are written as

T = % wiMw (4-22a)
P = % wl K w (4-22b)
4.9




M and K are the mass and stiffness matrices, respectively [as shown in Eq (3-1)], and the

vector of generalized coordinates is

. : T
w = [9=U1aUz,"',Ust=V1,Vz,"',Vst]

(4-23)

Assuming anti-symmetric appendage motion has reduced the number of generalized

coordinates by 2xNg¢. The order of the system of Eq (3-1) is thus n = (2xNg) + 1.

The elements of the mass and stiffness matrices are, fori=1,2, .., Ngandj=1, 2,

s Ngg

M,1) = 2(I +1,)
M@+ = 2[my®+L) @) + 1 L

L
+ PdTKJO(PJrR)Mi(P)dP]
ML) = 2 [myp Wy @) + 1 @ @)
L
+ pdwjoui(p)uj(p)dp]
M (1, i+Nget1) = M (i4Nggtl, 1) = MG+, 1) = M (1, i+1)
M (i+Nge+1, j+Ngrt1) = M (i+1, j+1)

M (i+1, j+Nge+1) = M (i+Ng+1, j+1) = 0

(4-24a)

(4-24b)

(4-24¢)

(4-24d)

(4-24e)

(4-24f)




L
K G+1,j+1) = 2E,1, _[O b @) 1 (o) dp (4-25a)
K (i+Ngt+1, j+Nget1) = K (+1, j+1) (4-25b)
K@{,1) = K(1,i+1) = K(1, i+Ng+1) = K(G+1, 1)

]

K (i+Ng+1, 1) = K (i+1, j+Ngpt+1)

K (i+Nge+1, j+1) = 0 (4-25c¢)

Model Order

After the first (rigid-body) mode, conservation of angular momentum results in the
vibrational modes occuring as pairs of 'opposition' and 'unison' modes. The first five
normal modes are shown in Figure 4-4. The anti-symmetric 'opposition' modes are simple
cantilever beam modes where adjacent arms move in opposition such that equal and
opposite torques result in no hub (rigid-body) rotation. The anti-symmetric 'unison’
modes are characterized by all four arms moving in unison; consequently, the hub rotates to
conserve system angular momentum.

The frequencies of pairs of opposition and unison modes are closely spaced and
aligned with the corresponding frequency of simple cantilever beam vibrations. This
alignment and decrease in spacing with increasing mode number is shown in Table 4-1 for
the first nine normal modes of the system (one rigid-body mode and four pairs of

opposition/unison modes aligned with the first four cantilever beam modes).




Rigid-body mode

Opposition Mode Unison Mode

[
!
I

Figure 4-4. First five normal modes (21:700)




‘iable 4-1. Frequencies for first nine normal modes

Draper/RPL Structure
Mode Frequency

# (Rad/sec) (Hz)
1 0 0

2 4.40 0.70
3 7.92 1.26
4 51.46 8.19
S 52.78 8.40
6 157.58 25.08
7 158.34 25.20
8 313.09 49.83
9 314.35 50.03

A typical design approach would begin with a very large-dimensioned structu:zal
model, perhaps on the order of 100 modes or more, even when control of only a small
number of lower modes is desired. Calculating and storing eigenvalues and eigenvectors
(frequencies and mode shapes) for such a huge number of modes helps ensure the accuracy
of the model at the lower modes by Rayleigh-Ritz convergence to the true mode shapes and
frequencies from above. The model for control design is then a very accurate but truncated
version of the much larger structural model. However, the desire in this research to
integrate structural and control design precluded such an approach, as the basic structural
parameters are to be design variables and iterated each loop along with the control system

variables. Hence, a large-order structural model was not calculated and truncated to form a

Cantilever Beam
Mode Frequency
(Rad/sec) (Hz)
1 9.42 1.50
2 59.04 9.40
3 165.33 26.31
4 324.02 51.57

design model. The structural model will only include those modes to be controlled.




This research considers control system design by specifying damping ratios and
frequencies of the first five normal modes, i.e., the rigid-body mode and the first two pairs

of vibrational modes. Thus, Ny = 2 and w is a five-dimensional vector:

w =1[6, U, Uy, Vy, Vo ]T (4-26)

Structural system design is accomplished by varying the thickness and height of the
arms and herce structural mass. The arms are kept identical to each other as their
dimensior are changed. The proportional damping constants in Eq (3-4) are taken to be o
=0, B =10, s0 C = 10-3 K and damping is proportional only to stiffness. With the
values for the system parameters given in Table 4-2, the explicit expressions for the

elements of the M and K matrices [Eqs (4-24) and (4-25)] can be evaluated.

Table 4-2. Draper/RPL configuration parameters

Hub radius (R) 0.3048 m (1 fv)
Rotary inertia of hub (1}) 10.8465 Kg-m? (8 slug-ft2)
Mass density of arms (pg) 2,690 Kg/m?3 (5.22 slug/ft3)
Modulus of elasticity (Ey) 7.584x1010 Pa (1.584x107 1b/f2)
Arm thickness (T) 0.003175 m (0.0104166 ft)
Arm height (x) 0.1524 m (0.5 ft)
Arm length (L) 1.2192 m (4.0 ft)
Tip mass (m,) 2.29038 Kg (0.156941 slug)
Rotary inertia of tip mass (I)  0.00244 Kg-m? (0.0018 slug-ft2)




Actuators and Sensors

Torque actuators are located on the central hub and at some position p,, on each arm.
For a torque uy, at the hub, a torque u; at position p,;; on arms 1 and 2, and a torque u; at

position p,; on arms 3 and 4, the right-hand side of Eq (3-1) is

1 2 2 oy
Bu = {0 2u(p,y) 0 uy 4-27)
0 Q 24 (pyy) u2

where

WE = =1u@],  u® = (@), @17 @29
p

Angular position and angular velocity sensors are located on the hub, and colocated
position and velocity sensors are placed at stations pgj, Ps2, Ps3» Ps4 on arms 3 and 4 and

stations Pss, Psg» Ps7» Psg on arms 1 and 2. The sensor influence matrix H is

i 1 QT QT i
0 H;T (psy) QT
H=10 u ot (4-29)

0 oF ul (pgs)




For the above configuration, then, n = 5 (N4 = 2), a = 3 (actuators), s = 9 (sensors),
B is @ 5x3 (nxa) matrix, and H is a 9x5 (sxn) matrix. The gains Gp and G, are both 3x9

(axs) matrices, and the output vectors are

¥p = [ e’ u (t9ps])a oo U (I,Psd,), v (t’pSS)s s V (t,pSS) ]T (4'30a)

Yo=Y (4-30b)

The locations p,; and p,;» of the torque actuators and pyy, gy, ..., Psg Of the sensors
will be allowed to vary during the design iterations to satisfy design objectives of placing
closed-loop frequencies and damping ratios (@ and {) while achieving desired reductions in
mass and/or control effort. Given the form Eq (3-3) of the control u, the control effort v is

defined as the Frobenius norm of the 10x10 (2nx2n) matrix G, given by

H'G,G,H H'G]G,H
Gu = (4-31)
H'GyG,H H'GIG/H
since

uT'u = xT G, x (4-32)




V. Optimization Technique

in order to do sirnultaneous (vice sequential) structure and control design, all desired
objectives will be treated as elements of a vector vice being weighted and summed to form a
scalar objective function. This vector approach precludes the use of existing, 'canned'
optimization algorithms. Instead, a minimum correction homotopy (MCH) technique will

be used (18-21, 23).

Mimimum Correction Homotopy Algorithm

The p elements ¥; of the objective vector y are the individual design objectives. The

MCH algorithm solves the set of non-linear equations
% @) -%@ =0 i=12.,p D

where Y,* is the ith desired goal and z is a d-vector of design variables. The first step is to

generate a homotopy family of problems by introducing 'portable’ goal function values

defined by the linear map
W) = ogy + (1- o) Y Ean) i=12.,p (52

with ay; the homotopy or continuation parameter. Replacing the original goals v,* in Eq (5-

1) with the goals ¥;,P (ay) yields the homotopy family of non-linear equations

Y [zo] + (¥ @eary) - ¥ @) Vo = ¥ @gan) i=12.,p (5-3)

At oy = 0, the solution to Eq (5-3) is z = 2,4, and at oy = 1, Eq (5-3) becomes the
H start H

original system of Eq (5-1). Therefore, the desired solution is z(cy = 1).




Note that if a solution is achieved at oy = 1, in multiobjective optimization terms the
solution is dominated and not Pareto. Also notice that the second term on the left-hand side
of Eq (5-3) (term in {}) may be interpreted as a 'search direction' multiplied by a 'step size'
(ogy). This formulation has favorable convergence characteristics since iterations can be
started with close estimates of the solution vector [z(0)] at each continuation step as oy is
swept from zero to one. The 'step size' (increment in o) can also be changed adaptively
in each iteration, an attractive feature for highly non-linear objective functions.

For a given continuation step, ay, Eq (5-3) is usually underdetermined. A unique

correction vector Az is obtained by minimizing AzT Wy Az subject to the truncated Taylor

series expansion of Eq (5-3),

Jz+A2) = ] (@ + [-6-1—] Az = 0 (5-4)

where Wy is an arbitrary weighting matrix and J(z) is defined as
Jilzlop)] = ag %" @) + (1 - o) ¥ @gan) - ¥ (2(op)] i=12,..,p (55)

Conforming to the implicit local linearity assumptions, the weighted minimum norm

correction vector is

T T y-1
e CHIGECIR
oz oz oz
where the pxd locally evaluated Jacobian is
af_ | & (5-7)
oz oz

Starting with a neighboring solution at the previous step and using the above

correction vector Az, z(0y) is refined recursively by




Z(Ohnew = Z(ag)og + Az (5-8)

until local convergence is achieved [Eq (5-3) is satisfied] for each ayy. This is an ‘inner
loop' on Az. Final convergence is obtained (an ‘outer loop') by incrementing oy after each
local convergence until oy = 1. Table 5-1 summarizes the procedure.

This MCH algorithm has proven effective for eigenvalue placement problems and, by
its inherent reliance upon neighboring solutions, is also attractive for systematically
conducting trade studies or generating trade-off surfaces (18-21, 23). Junkins (24) also
showed that this minimum norm correction technique is theoretically equivalent to the

gradient projection formulation for constrained optimization problems.

Table 5-1. MCH procedure

Start Iterate Minimum
Iteration at Norm Correction To Obtain
Zgart = 2 (0) Ilz(agp)] = 0 - 2(ayy)

(o) J[z(oygp)] = 0 - z(0yo)
. N . .
Z(0q.) Sz =0 - z(ogg=1)

with 0 < oy <oy <. .. < oye=1

5-3




Vector Objective Function

The structural design objective is taken to be the mass of the arms, &, defined as the
product of their thickness, height, length and mass density. Control design objectives are
the closed-loop frequencies w; and damping ratios {; of the first five modes (one rigid-body
rotation and four vibration modes) as well as the control effort v. The composite objective

vector is
Yy = [0, &,0,  , ~, 05,8, m,v]T (59

The design variables are the arm thickness, height, actuator and sensor locations, and

elements of the feedback gain matrices. The design vector z is

z = [T, K, Pu1> Pu2> Ps1> Ps2s = Psg» Gp(1,1), Gp(1,2), -+, Gp(1,9), Gp(2,1),
"t Gp(3y9)7 Gv(l’l)9 Gv(112)9 ) GV(]!9)1 Gv(291)9 Ty Gv(379) ] T (5'10)

The arm length, L, and tip mass, m,, have also been included as design variables in
previous studies (21, 22). They were not included as such in this research for two reasons:
1) they are more likely to be specified due to higher-level mission requirements, such as
keeping some equipment away from the hub, while the arm thickness and height are more
likely to be available as design options to support the tip masses, and 2) excluding arm
length and tip mass reduced the dimensionality of the problem and the consequent
computational burden without detracting from the utility and validity of the design method.

Results of studies with various combinations of the elements of y will be presented in
the next chapter.

ivativ

As a matter of implementation, the full 12x66 (pxd) matrix [8)/6z] was used in ail

design iterations, even though all 12 y;* were not specified. The appropriate J; were set to

zero in Eq (5-6) to calculate correction vectors Az. This was acceptable since dominated




solutions (o = 1) were sought vice Pareto solutions, which seek zero gradients to
maximize ay. While more derivatives were calculated than necessary, all were obtained
analytically (closed-form) vice numerically. If numerical differentiation had been required,
the additional computational burden would have made it worthwhile to incorporate the logic
to manipulate the matrices according to the specific objective vector under consideration.

To detail the derivatives, first expand the right-hand side of Eq (5-7) where the 7; are

as given in Eq (5-9):
821 622 SZd
R
[._x.:l = 821 822 82d (5—]1)
oz
[ 8z ¥z Szg |

Since ® = p4 T X L, the required derivatives are simply

S ) )
1Y = -§-£ = deL, 141 = _TC = PdtL (5‘123)
dz d1 dzy dx
)
Moo, i=23,d=66 (5-12b)
Szi

For the rates of change of the closed-loop frequencies and damping ratios, recall Eq

(3-13) and let z be any element of the design vector z:

5-5




oA 6  dw
= + i (5-13a)

82k 82k 82k

oo o) <52

= (5-13b)
8 2 (0? + 02 )?
To obtain the 8A/z, differentiation of Eq (3-12a) leads to, fori =1, 2, ..., 2n,
S\, SA
— = =2 (5-14)
8 Zy 6 Zy

Given the form of A in Eq (3-10),

] 0 0

8 A

8 Zy = _M‘l [6 KCl J _M._l (8 Ccl) (5—15a)
6 Zy o Zx
S M—] 5 M_l
_( ) Kcl J "[ ) CCl }
L 8 Zy 8 2y ]

-1
M _ (QA—) m~! (5-15b)
Szk 81k

[K,j and C,; were defined in Eq (3-6)]. M and K are functions of T and x only (z; and z;).

Recalling the symmetry of those matrices given in Eqs (4-24) and (4-25), the expressions

for the non-zero derivatives are, fori=1, 2, .., Ngrand j=1, 2, ..., Ngy,




SM(1,1
—?:——)- = % Pa ¥ ) (5-16a)
1
SM (1, i+1) L
e LT jo (p+R) 1 (p) dp (5-16b)
Zy
&M (i+1, j+1) L
Ty ZdeJ‘o Hi (p) u;(p) dp (5-16¢)
1
3K (i+1, j+1) T i "
— T o lg, xj u () 1 (o) dp (5-164)
821 0
M (1,1
—_’8 62 ) = % Pg T Il (5-17a)
2
SM (1, i+1) L
R — = 2per (p+R) ujp) dp (5-17b)
)
&M (i+1, j+1) L
— = 2 pdtj; Wi (9) 1 (p) dp (5-17¢)
L5
S K (i+1, j+1) Loaft - "
I - e jo b (o) 1 (o) dp (5-17d)
%)

The rest of the components of Kj and C; are not functions of T or K. Recalling the

definition of the design vector z [Eq (5-10)],

B = B (py1:Pu2) = B(z3,24) (5-18a)
H = H (pg1, Ps2s --» Psg) = H (25, 2, ..., 212) (5-18b)
Gp = Gp (213, Z14s ooy 239) (5-186)
Gv = Gv (240, Z4]s ooy 266) (5-18d)




Given the forms of B and H [Eqgs (4-27) to (4-29)], the only non-zero elements of [6B/6z ]

and [8H/dz;] are in the positions corresponding to the particular z:

6 B ”
-_— =2y (), k=34 (5-19a)
o Zy

60H ,
—— = K (Zk) R k =5, 6, ceny 12 (5—19b)

82k

(5-19¢)

o

A

hel
~——
[ —

. im j in i
W) = lﬁ-[(-l)*‘(—rB)Hm( .

RY _ .
(l—g) I:(—l)'+1 + cos(lip)] (5-19d)

Notei=1,2(i=1, 2, .., Ny Ng=2)and n is the mathematical constant, not the arm

b ()

mass, in Eqgs (5-19).

Even more simply, the elements of [SGP/SZk] and [8G,/8z;] are all zeroes except for
a one in the position corresponding to the particular z.

Finally, recalling the form of the control effort matrix G, {Eq (4-31)] and denoting

the magnitude or Frobenius norm of G, as IG, i,

2n=10 2n=10 D)

v = flo,ll = { > Y G (i,j)]z} (5-20a)

i=1  j=1

10 10
ov 1 ) 3 Guu (i)
—_— = - E E G,, (i,j) | —— (5-20b)




Given the functional dependencies in Eqs (5-18) and the expressions for [8H/dz;] in Eqs
(5-19b) and (5-19c), the elements of [8G,,,/0zy] are

- -

T T

(S—H] Gl G H + (Eﬂj GTG,H +

Szk Szk

OH
s ae(s]
8Zk 82k
5Gu
oz ) T T
(.8_}1) 03" GpH + [S_.}iJ G$GVH +
Szk SZk
H
H' G, G, (EE]J HTGT GV(LH
82k 82k J
k =15,6,...,12 (5-21a)
— 5G,) 5G T
][2%2) 6,0 Gy 52 ] (2] o]
dz 5

SGuu _ szk k Zy
82k SG

HT GI (—BJH} [0]

82k B
k = 13,14, ..., 39 (5-21b)
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[0] [HTGE[-S—E!}H]
5 Gy, 82
Sz T T
wlseon] [efsea- sz
82k Szk 8Zk §

k = 40,41, ..., 66 (5-21¢)

Design Procedure
Now that all necessary equations have bezn detailed, the following are the steps to go

through one 'inner loop' of the design procedure (Table 5-1), starting with ay = ay; =

0.1.

-
.

Initialization - set constants, read initial variable values from input files, etc.
2. Calculate system matrices - M [Eqs (4-24)], K [Eqgs (4-25)], B [Egs (4-27),
(4-28), (5-19¢)], C [Eq (3-4)], H [Eqs (4-29), (4-17)], A [Egs (3-10), (3-6)].

3. Calculate right and left eigenvalues and eigenvectors of A [Eq (3-11)]; sortin
order of increasing frequency and normalize eigenvectors [Eq (3-12)).

4.  Calculate objective vector ¥ [Eq (5-9)] - frequencies and damping ratios given
by Eq (3-13), control effort v by Eqs (5-20a) and (4-31), and mass t = p4 T x L.

. Calculate gradients.
Partial derivatives of mass and stiffness matrices [Eqs (5-16) and (5-17)].
Partial derivatives of control and sensor influence matrices [Eqs (5-19)).

Partials of A [Egs (5-15), (3-6)].

Partials of closed-loop eigenvalues [Eq (5-14)).

LIS S S

Partials of closed-loop frequencies and damping ratios {Eqs (5-13)].




f.  Partal derivatives of mass [Eqs (5-12)].
g. Partials of control effort [Eqs (5-20), (5-21), (4-31)].

6. Form gradient matrix [8)/8z] [Eqgs (5-7), (5-11)] from results of steps (5-¢) thru
(5-g) above.

1. Calculate correction to design vector [Egs (5-6), (5-5)].

8.  Check that corrections Az will not violate any constraints on elements of z (for
example: thickness, height, sensor and actuator locations). If any wiil be violated, augment
J with the amount(s) of the violation(s), augment [8]/8z) with a -1 in the appropriate
location(s) [row(s) and column(s)], and re-calculate correction vector Az as in step (7)
above.

9. Calculate magnitude of correction vector (| Az l; square root of the sum of the
squares of the elements).

10. If Azl < z,5 (convergence limit), this inner loop has converged [Eq (5-3) is
satisfied at this value of ay]. Increment oy and begin new inner loop at step (7) above.

11. If inner loop has not converged, calculate new design vector z [Eq (5-8)] and
return 1o step (2) above for another iteration.

Once the inner loop has converged [step (10)] at ooy = 1, the homotopy family of
equations [Eq (5-3)] has become the original system of Eq (5-1), and the procedure has

converged to the desired objective vector y*.




VI. Integrated Structural/Control Optimal Design Results

Two cases were considered, most readily characterized by the first mode eigenvalues.
Case 1 is high frequency, low damping. Case 2 is low frequency, high damping. The
desired ;" and {;* were not specified for all five modes. The eigenvalue portions of the

objective vectors for the two cases are

Casel: v* =[ o,* =3radfsec, {;*=0.03, {,*=0.03, {3*=0.03,

L*=001, {s*=001]T (6-1)

Case 2 : 'YZ* = [ (Dl* = 03, (1)2* =425, 0)3* = 83, C]‘ = 07,
Ly* =003, {3*=003, {4* =001, {*=001]1T (6-2)

Note that this is not pole placement but rather partial specification of the eigenvalues for the
first fi e normal modes of vibration.

All elements of the gain matrices G, and G, were Initially set to zero except for
Gp(1,1), which was set to 0.001 to prevent the rigid-body eigenvalue being identically
zero. Initial actuator locations were p,;; = p,2 = L/2. Initial sensor locations were pgy =
Pss = L/4, ps = psg = L/2, pg3 = ps7 = 0.7L, pgg = psg = 0.9L. Structural parameters
were as given in Table 4-2. For Case 2, the arm length and tip mass were adjusted to 1.12
m (3.67 ft) and 2.90 Kg (0.19871 slug), respectively, to place the second- and third-mode
frequencies (21).

The weighting matrix Wy in Eq (5-6) was nominally set to the identity matrix.
Typical step size and convergence limits were Aoy = 0.1, Az = 0.0001. However, the
step size, weights and limits on the sensor and actuator locations were varied to aid

convergence, particularly for large mass and control effort reductions.




Four types of designs were accomplished: 1) (partial) eigenvalue placement {y;" and
72" as given in Eqgs (6-1) and (6-2)], 2) eigenvalue placement with mass reduction, 3)
eigenvalue placement with control effort reduction, and 4) eigenvalue placement with mass
and control effort reduction. The same (partial) eigenvalue placement was used for all
designs within each case. The designs are identified by case number (first digit) and
amount of mass and/or control effort reduction. For example, design 1-Base is Case 1,
baseline (no mass or control effort reduction), design 1-M10 is Case 1, 10% mass
reduction, design 2-CE25 is Case 2, 25% control effort reduction, and design 2-MCES0 is
Case 2, 50% mass and control effort reduction.

Final values for elements of the design vector z are given in Appendices A (%, K, py1»
Pu2s Pst» Psis» - Psg for all designs) and B (elements of Gy, and G, for designs 1-Base,
1-M50, 1-CESO0, 1-MCES0 and 2-MCES0). Appendix C details the weighting matrices

Wy for all designs.

Eigenvalue Placement

While closed-loop frequencies and damping ratios are certainly not complete
specifications of a control system, they are familiar, easily understood characteristics,
particularly for top-level concerns of structure/controller interaction. Solely placing the
frequencies and damping ratios [as given in Eqs (6-1) and (6-2)] was not the purpose of
this research, but is common to all integrated structural/control designs. Designs 1-Base
and 2-Base were accomplished for Cases 1 and 2, respectively, and the resulting control
efforts v were calculated [Eqs (4-31) and (5-20a)] and taken as the baseline values [Case 1:
12,500; Case 2: 85]. Note that while v does not have a physical interpretation, such as
torque, it is still a valid measure of the amount of control exerted by the system and, hence,
relative comparisons of v are meaningful. Actual control torques require specification of

the state vector.




Figures 6-1 and 6-2 are typical trajectories of the eigenvalues (Cases 1 and 2,
respectively) during the optimization process as oy was swept from oy = 0 (z = Zgap) t0

ay =1 (z=2"). These trajectories are representative of those for all of the designs.

Mass Reduction

For integrated structural/control design, the previous (partial) eigenvalue placement is
accomplished simultaneously with reduction of the arm mass, . The objective vectors ;*
and 72* were augmented with the desired arm mass, ©*. Mass reductions of 10, 25 and
50% were obtained while placing the closed-loop eigenvalues as specified in Eqs (6-1) and
(6-2). Mass reductions beyond 50% were not attempted but are certainly possible up to
that corresponding to minimum limits on the arm dimensions, albeit at the expense of
higher control efforts. Control efforts for the reduced-mass designs were calculated and
are tabulated in Table 6-1. As expected, maintaining the closed-loop characteristics while
reducing arm mass generally requires more control effort, although design 1-M25 (Case 1,
25% mass reduction) is a fortunate exception, apparently due to more favorable sensor

placements (Appendix A).

Control Effort Reduction

As a precursor to reducing both mass and control effort, control effort was reduced
while holding the arm mass fixed. The objective vectors y;* and y,* were augmented with
the desired control effort, v*, and control effort reductions of 10. 25 and 50% of the
appropriate baselines were obtained while placing the closed-loop eigenvalues as specified
in Egs (6-1) and (6-2). The reductions were accomplished primarily through sensor

placement (Appendix A). Reductions beyond 50% were not attempted.
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Table 6-1. Control efforts for reduced-mass designs

Design % Mass Control Effort
# Reduction L
1-Base 12,500
1-M10 10 13,500
1-M25 25 11,000
1-M50 50 32,400
2-Base 85
2-M10 10 339
2-M25 25 1,441
2-M50 50 4,323

Mass and Control Effort Reduction

Since the reduced-mass designs essentially assumed infinite available control effort, a
more realistic problem is to augment the basic v;* and y,* with the desired arm mass and
desired control effort. For Case 1, reductions of 10, 25 and 50% in both mass and control
effort were obtained while placing the eigenvalues per Eq (6-1).

For Case 2, the arm length and tip mass had been adjusted to place the second- and
third-mode frequencies (21) and the first-mode frequency is very low (0.3 rad/sec).
Consequently, the baseline control effort (required to satisfy y,*) is also very low, so low
that only 5% reductions in mass and control effort could simultaneously be achieved
(design 2-MCES). Control efforts much larger than the baseline were required to satisfy
eigenvalue placement with simultaneous mass reduction, as shown in Table 6-1. These
control efforts were subsequently reduced by the same percentage as the mass, i.e., the
control efforts corresponding to 10, 25 and 50% mass reductions were reduced by 10, 25

and 50%, respectively (designs 2-MCE10, 2-MCE25, 2-MCES0).




Spillover Sensitivity

Although design goals of mass and/or control effort were met while achieving desired
closed-loop frequencies and damping ratios, the design model only included the first five
normal modes. Model-order truncation, while a necessary evil for computational purposes,
leaves the designs susceptible to spillover from the higher-order unmodeled or residual
modes. All designs achieved previously (Appendix A) were evaluated against 7-, 9- and
11-mode evaluation models. Figures 6-3 through 6-7 are plots of the modes' damping
ratio for designs 1-Base, 1-M50, 1-CES0, 1-MCES0 and 2-MCES0 (Case 1: baseline,
50% mass reduction, 50% control effort reduction, 50% mass and control effort reduction,
and Case 2: 50% mass and control effort reduction) to show the extreme spillover
sensitivity of the designs. The modes of the design model (1-5) are those whose damping
ratios were specified during the design process. The 'baseline’' damping (solid bar) is: 1)
the specified damping ratio per Eq (6-1) for modes 1-5, and 2) the open-loop damping
ratios for the residual modes (slightly stable due to the assumed proportional damping).

All the designs had at least one mode go unstable, while many unstable modes was
more of the norm. Instability was not limited to the residual modes; modes in the design
model were also driven unstable, as with modes 2 and 5 in Figure 6-6 and mode 4 in
Figure 6-7. Even if the modes in the design model were not driven unstable, they were
often subject to wild variations in damping ratio as soon as any higher-order modes were
included in the evaluation model (modes 4 and 5 in Figure 6-5, mode 4 in Figure 6-6).
There was no quantifiable correlation of spillover sensitivity with mass and/or control effort
reduction, either within or across the two cases, other than all designs were very

susceptible.
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II. Spillover Control

The minimum correction homotopy technique described in Chapter V has
successfully been used for integrated structural/control design as evidenced by the designs
achieved (listed in Appendix A). However, in light of the design model order truncation
and lack of any robustness criteria in the design objective vector, the extreme spillover
sensitivity of the designs is not surprising. Although spillover does not have to be
destabilizing, it will certainly affect system performance. Thus, in order to provide a
complete technique for integrated structural/control design, spillover control is also

addressed. Two approaches were considered: simple constraints and modal suppression.

Constrained Solutions

The first approach to control spillover was simply to increase the order of the design
model from 5 to 11 modes. No attempt was made to place the eigenvalues of the additional
modes, 6-11; they were simply constrained to have damping ratios > 0.001. In effect, this
was an attempt to simply meet the design objectives given in Chapter VI while guaranteeing
stability through 11 modes; i.e., push off the onset of spillover to modes 12 and beyond,
hoping that these much higher-frequency modes have less effect on the modes of the
original design model (1-5). Or, it may be thought of as a 'brute force' attempt to build a
deadband into the controller over the frequency range covered by modes 6-11 (~ 52-840
rad/sec).

As a matter of implementation, the objective vector was expanded to include the first

11 modes

Y = [w]'»Cl, wz’cz""a w]]’Cl]! T, U]T (7'])




[mass (rt) and control effort (V) were included as appropriate]. Even though all 24 ;* were
not specified, the full 24x66 matrix [8]/6z) was used in all design iterations. The
appropriate J; were set to zero in Eq (5-6) to calculate correction vectors Az. Since this
approach was only applied to the Case 1 designs, the J; corresponding to w,, 03, ..., 01
were all set to zero. The spillover control then set the J; corresponding to {;, i=6, 7, ...,
11 equal to zero if that {; was > 0.001. Finally, design iterations were started with the
‘converged’ solutions from the Case 1 designs, i.e., the final designs were 'post-
processed’ to control spillover.

The new designs (with spillover control) were then evaluated against 13-, 15-, 17-,
19- and 21-mode evaluation models. Figures 7-1 and 7-2 are plots of the modes' damping
ratios for designs 1-Base and 1-MCES0 (Case 1, baseline and Case 1, 50% mass and
control effort reduction) with the spillover control included. Figure 7-1 (design 1-Base)
shows the design stable and not too much variation in damping ratio through 21 modes.
However, this design was the exception rather than the rule. The rest of the spillover-
control designs exhibited characteristics similar to the non-spillover-control designs: all
had multiple modes go unstable, including the spillover-controlled modes (6-11), and the
damping ratios were often subject to wild variations with changing evaluation model size.
The 25 and 50% mass and control effort reduction designs (1-MCE25, 1-MCES0) also had
modes in the design model driven unstable (modes 2 and § in Figure 7-2).

In short, the simple constraint approach to spillover control did delay the onset of
instability to modes 12 and higher, but the designs still exhibit far too much spillover
sensitivity. Model-order truncation effects were not mitigated by this technique except for
one fortunate design (1-Base), and that very exception points out the unreliability of this

approach to control spillover.
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Modal Suppression

A modal suppression technique (25, 26) was attempted next. While the technique has
also been used to design decoupled controllers (27-29), it is used here to eliminate
observation spillover and recover stability.

Technique. Recalling the system of Eq (3-1), lety;2and ¢;, i= 1,2, ...,n be the

eigenvalues and eigenvectors of the associated eigenvalue problem
Vi M ¢ = K ¢ (7-2)

Define @ as the matrix with @; as the ith column, where the ¢; have been normalized with

respect to the mass matrix,
OTM D = 1 (7-3)
i.e., @ is the system modal matrix. Also define the coordinate transformation
w=00&n (7-4)

where 1 is an n-vector of modal coordinates.
The second-order system of Eq (3-1) can now be written in first-order state-space

form as
X = Ax + Du (7-5)

where

x = , X = (7-6)




0 1
A = (7-7)
[—y?] T2yl

0
D = (7-8)
®'B
[-y2]is a diagonal matrix of open-loop modal frequencies squared, and f-zng isa

diagonal damping matrix. The output y and control y are

HO 0
¥ = X (7-9)
0 H®
To eliminate observation spillover, first define a new output g as
gq=Ty% @-11)

The matrix I" will be chosen such that g does not contain any information regarding modes
to be suppressed, say modes 6-r. In othcr words, g will be a lincar combination of the s-
elements of the output y such that only modes 1-5 are observed. Since there are nine
sensors (s=9), if five modes are to be controlled, a maximum of four modes can be
suppressed (i.e., r=9, suppress modes 6-9). There must be as many independent 'sources
of information’ (elements of the new output g) as modes to be controlled.

The columns of H® correspond to observations of modes:

H® = & = [E, 15! ! (7-12)

gl




To suppress observations of modes 6-9, I must be such that
F[Eg:i27:83: 8] =T E9 =0 (7-13)
Singular value decomposition is used to determine the null space of Z¢ o and I solved for
by transposing Eq (7-13)
56’1;9 T =0 (7-14)

The new control becomes

u = [GyiGylg=1G,:G, Ty

~1
{n
o

[G,: Gyl (7-15)

fen)
|
[1}
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Note that the gain matrices G and G, must be reduced in size accordingly. For
suppression of modes 6-9, Gy and G, are 3x5 matrices.

Results. The 'converged' solutions from eigenvalue placement, 50% mass reduction,
50% control effort reduction, and simultaneous 50% mass and control effort reduction
were 'post-processed’ to eliminate observation spillover: 1) structural sizes and sensor and
actuator locations were held fixed, 2) I' was calculated to suppress observation of modes
6-9, and 3) the MCH algorithm was re-run with the elements of the 3x5 Gp and G, gain
matrices the only variables adjusted to recover the closed-loop eigenvalue placement.
Control effort was not specified [i.e., the desired objective vectors were as shown in Eqs
(6-1) and (6-2), unaugmented] and the 5-mode design model was used.

Tables 7-1 through 7-3 detail th~ damping ratios obtained with up to a 19-mode
evaluation model for designs 1-Base, 1-MCE50 and 2-MCES0 (Case 1, baseline; Case 1,

50% mass and control effort reduction; Case 2, 50% mass and control effort reduction).




However, all modal-suppression designs exhibit the same favorable characteristics. The
controlled modes' (1-5) damping varies only slightly; there appears to be some
‘conservation of damping ratio' within mode pairs (2&3, 4&5) at higher-order evaluations.
The suppressed modes (6-9) remain at their open-loop damping ratios, as they should;
since the controller can't 'see’ those modes, it doesn't affect them. The assumed slight
amount of proportional damping keeps modes 6-9 stable. Not only are the controlled and
suppressed modes much more well-behaved, but the residual modes’ (10-19) damping
ratios are relatively immune to changes in the order of the evaluation model. There is now
essentially one decade of deadband (modes 6-9, ~ 52-530 rad/sec) above the controller
bandwidth (modes 1-5, 0-52 rad/sec).

Two designs were also attempted suppressing only modes 6-7 (note G, and G, were
3x7 matrices). However, modes 8-10 remained unstable, whereas when modes 6-9 were
suppressed, the onset of spillover instability was delayed until mode 1 .t the earliest (for
those two specific designs). As one might expect, making full use of the four extra sensors
(suppressing modes 6-9) gave more robust designs than only putting in two modes of
deadband (modes 6-7).

Finally, Table 7-3 shows the design stable through 19 modes. This fortunate (as
opposed to planned) result points out the necessity to always check through all modes of
interest to see if residual modes are stable or unstable - spillover does not necessarily

always cause instability.




Table 7-1. Damping ratios with modal suppression, design 1-Base

0.03
0.03
0.03
0.01
0.01

0.000799
0.000803
0.0016
0.00161

(Case 1, baseline)

# of Modes in Evaluation Model

11

0.0293
0.0299
0.0301
0.0106
0.00973

0.000799
0.000803
0.0016
0.00161

0.0324
0.0357

13

0.03
0.03
0.03
0.0105
0.00978

0.000799
0.000803
0.0016
0.00161

0.0327

0.0346

0.0166
-0.05

15

0.0301
0.03
0.03
0.0104
0.00983

0.000799
0.000803
0.0016
0.00161

0.0323

0.0349

0.0165
-0.0499
-0.00609
-0.00788

17

0.0301
0.03
0.03
0.0103
0.00985

0.000799
0.000803

0.0016
0.00161

0.0322
0.035
0.0164
-0.0499
-0.00608
-0.00786
-0.00314
0.00874

19

0.0301
0.03
0.03
0.0102
0.00986

0.000799
0.000803
0.0016
0.00161

0.032
0.0351
0.0164
-0.0496
-0.0066
-0.00751
-0.00314
0.00875
-0.0287
0.0141
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Table 7-2. Damping ratios with modal suppression, design 1-MCE50
(Case 1, 50% mass and control effort reduction)

# of Modes in Ev
2 11 13
0.03 0.029 0.029
0.03 0.0299 0.03
0.03 0.0297 0.0296
0.01 0.0113 0.0114
0.01 0.00998 0.00998
0.000867 0.000867 0.000867
0.000869 0.000869 0.000869
0.00171 0.00171 0.00171
0.00172 0.00172 0.00172
0.0755 0.0756
0.00877 0.00876
0.00609
0.00694
7-9

ation Model

15

0.0292
0.0298
0.0296
0.0113
0.00998

0.000867
0.000869
0.00171
0.00172

0.0755
0.00876
0.006
0.00703
0.00443
-0.00784

117

0.0295
0.0298
0.0296
0.0111
0.00998

0.000867
0.000869

0.00171
0.00172

0.0753
0.00876
0.00591
0.00706
0.00444
-0.00747
-0.035
0.00924

19

0.0295
0.0297
0.0296
0.0111
0.00998

0.000867
0.000869
0.00171
0.00172

0.0753
0.00876
0.00591
0.00708
0.00444
-0.00753
-0.0348
0.00924
0.0121
0.0199
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Table 7-3. Damping ratios with modal suppression, design 2-MCE50
(Case 2, 50% mass and control effort reduction)

# of Modes in Evaluation Model

2 11 13 13 11 12
0.7 0.699 0.7 0.7 0.7 0.7
0.03 0.0297 0.0298 0.0298 0.0298 0.0298
0.03 0.0306 0.0305 0.0304 0.0304 0.0305
0.01 0.00602 0.00642 0.00691 0.00657 0.00646
0.01 0.0138 0.0134 0.013 0.0133 0.0134

0.000958 0.000958  0.000958  0.000958  0.000958  0.000958
0.00096  0.00096 0.00096 0.00096 0.00096 0.00096
0.00189 0.00189 0.00189 0.00189 0.00189 0.00189
0.00189 0.00189 0.00189 0.00189 0.00189 0.00189

0.00404 0.00406 0.00401 0.00407 0.0041
0.00363 0.00355 0.00361 0.00354 0.00349
0.00554 0.00555 0.00557 0.00558

0.00563 0.00562 000561 0.0056
0.007 0.00709 0.00712
0.00723 0.00705 0.00697

0.0119 0.0121

0.0116 0.0115

0.0149

0.0151




III. Conclusions

This dissertation has presented an approach for integrated structural/control design
and applied it to a flexible space structure (Draper/RPL configuration) and its active control
system (direct output feedback). The primary contribution has been to treat the problem in
an integrated or simultaneous fashion vice sequential design iterations on the two separate
problems.

A minimum correction homotopy (MCH) technique was used to simultaneously
optimize a vector of objective functions, including closed-loop damping ratios and
frequencies, structural mass, and control effort. Hence, designs were achieved via
multiobjective optimization vice forming a scalar objective via weighting and summing the
individual objectives. The MCH technique has heretofore not been used to solve
multiobjective optimization problems, nor has structural design (reduce mass) been
combined with control system design at such a detailed level (place closed-loop frequencies
and damping ratios, reduce control effort). [Note that the control system design was not
pole placement, but specification of all damping ratios and some frequencies of interest, as
shown in Eqgs (6-1) and (6-2)].

Designs with up to 50% reductions in mass and/or control effort were obtained while
achieving desired c'osed-loop characteristics for the first five normal modes of vibration.
However, the designs, based on a reduced-order structural model, are easily driven
unstable by spillover from higher-order unmodeled modes. A modal suppression
technique completed the design approach by eliminating observation spillover from modes
6-9 and providing one decade of deadband above the controller bandwidth. The resultant
designs are much less sensitive to the effects of model-order truncation. Additional

deadband could easily be obtained by controlling fewer modes or simply adding sensors.




IX. Recommendations

The designs obtained in this research are dominated vice Pareto solutions. That is, all
elements of the objective vector ¥y were simultaneously achievable; no trade-off amongst
the elements of the objective vector (Y;, individual objectives) was done to arrive at some
subjective 'best’ solution. Attempts to use both utility function and goal programming
techniques as described in Chapter II to find Pareto optimal solutions to this multiobjective
optimization problem were unsuccessful. In fact, mass and control effort were never
included as objectives, since convergence for the sub-problem of eigenvalue placement was
never achieved. A variety of weights and goals were tried, not only with closed-loop
frequencies and damping ratios as design objectives but also using the real and imaginary
parts of the closed-loop eigenvalues directly as the objectives in an attempt to at least reduce
the nonlinearities of the problem, but all to no avail.

The first, natural extension of this research would be to use the minimum correction
homotopy (MCH) design approach to find Pareto solutions. The reported body of research
on multiobjective optimization and Pareto solutions, albeit not for integrated
structural/control design but rather dealing with only one discipline, suggests utility
function, goal programming, and/or game theory techniques (2-11, 13-17). Since all
reported techniques involve some form of weighting and summing individual design
objectives, direct application of the MCH algorithm may be difficult. However, given the
excellent convergence characteristics of the MCH algorithm to dominated solutions, it
seems worthwhile to attempt to use it to find Pareto solutions.

Whether dominated or Pareto solutions are sought, a valid question is: what are the
best objective functions to use for integrated structural/control design? The design

objectives used in this research (closed-loop frequencies and damping ratios, structural




mass, control effort), although certainly valid and important system characteristics, can
certainly be improved upon. Additional objectives could be eigenvectors, robustness,
structural stresses, displacements, etc. Any design improvements would then have to be
weighed against the corresponding computational burdens and difficulties.

Any or all of the assumptions and parameters inherent in this proof-of-technique
could be investigated. The design approach certainly needs to be examined with respect to
much higher-dimensional problems, allthough no stumbling blocks other than
computational loading are immediately foreseen. Using the technique with different
structural models and/or control laws should not only verify the technique's utility and
validity but also yield great varieties of design options and trade-offs.

Finally, the modal suppression technique could be incorporated into the main design
iteration loop (vice being a 'post-processing' algorithm to recover stability) to see if such
inclusion achieves required stability with lower control gains, control effort or sensitivity to

uncertain parameters.
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Design 1-Base with modal suppression

-20.9
= -37.3

-43.7

-0.490
= 0.075

-2.87

-0.344

-0.929
1.67

1.39
2.24

0.691

-1.80
-6.16

2.36

0.138
2.15

-1.15

-2.30
-7.69

3.74

-1.24
-0.748
1.10

Design 1-M50 with modal suppression

-16.4
= -27.1
-25.7

-1.38
= 0.862

-0.633

-0.286
0.353

-0.471

-0.519
0.110

-1.03

-2.27
0.747

1.64

-0.474
0.159
-0.828

-0.729
0.363

0.127

-1.15
0.094

0.343

Design 1-CES0 with modal suppression

-22.8
= -41.4

-42.1

-1.78
= -8.03
3.49

1.91
1.60

-5.27

-1.54
-1.54

0.011

-0.658
-2.66

-2.61

0.998
0.838

0.147

-2.16
-2.41

5.74

1.21
1.65

0.434

-1.02
-3.82

1.38

0.471
-0.394

-0.361

-4.25
-3.58

4.28

-1.91
0.093

-0.148

0.856
1.92

0.365

-0.918
-0.097

0.313




Design 1-MCESQ with modal suppression

-18.3
-30.6

-22.5

-0.857
5.62

1.08

-0.092 -1.48
-4.05 -3.26
-3.67 -1.58
-3.49 372
0.436 -0.234
-0.124 -1.36

4.64
3.83

-1.46

-1.26

-0.159
0.256

Design 2-MCES0 with modal suppression

-166
74.0

4.62

-22.1
14.8

-19.0

-3.28 198
-60.4 188
128 -49.5

-19.4 5.50
-27.8  10.8
-12.8 1.88

2.26
23.2

-61.4

7.15
14.2

2.14

-1.46
-12.5

-7.66

-8.23
0.296

-1.49

-2.89
50.9

-47.6

16.9
13.0

17.8




Appendix C: Weighting Matrices

All weighting matrices Wy [in Eq (5-6)] were diagonal matrices. For all but two
designs, the matrices were identity matrices.

For design 1-MCES50, the first 12 diagonal elements were 1, 1, 10, 10, 10, 10, 100,
100, 10, 10, 100, 100; the rest were ones - i. €., the elements of Wy corresponding to the
actuator locations and two inboard sensor locations on each arm (py1. Py2, Ps1» Ps2» Pss»
Pse) were 10, and the weights on the two outboard sensors on each arm (pg3, Pga» Ps7s
psg) were 100.

For design 2-CE50, the first 12 diagonal elements were 1, 1, 0.1, C.1, 0.1, 0.1, 0.1,
0.1,0.1,0.1,0.1, 0.1; the rest were ones - i.e., the elements of Wy correspouding to the

sensor and actuator locations were all 0.1.
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Block 19:

A minimum correction homotopy approach is used to obtain the
simultaneous/integrated optimal design of a large flexible structure
and its active control system. Instead of the usual method of weighting
and summing all desired objectives to form a constrained scalar
optimization problem, a vector of objective functions is dealt with
directly. The Draper/RPL configuration (a central hub with four symmetric,
identical arms) is the design structure. The design seeks to minimize the
mass of the arms. Using simple feedback of arm displacements and velocities,
the control system seeks to achieve specified closed-loop eigenvalues
(frequencies and damping ratios) and control effort. Design variables are
the arm dimensions, control system gains, and sensor and actuator locations.
Not only can the structural design be accomplished while placing the
closed-loop eigenvalues, but a simultaneous 50% reduction in mass and/or
control effort can be obtained. Since reduced-order models were used for the
structural/control design, the resultant configurations are easily driven
unstable by spillover from higher-order unmodeled modes. A modal suppression
technique is applied to eliminate observation spillover and provide a decade
of deadband above the controller bandwidth.




